
Sharing Less is More: Lifelong Learning
in Deep Networks with Selective Layer Transfer

Seungwon Lee 1 Sima Behpour 2 Eric Eaton 1

Abstract
Effective lifelong learning across diverse tasks
requires the transfer of diverse knowledge, yet
transferring irrelevant knowledge may lead to in-
terference and catastrophic forgetting. In deep
networks, transferring the appropriate granularity
of knowledge is as important as the transfer mech-
anism, and must be driven by the relationships
among tasks. We first show that the lifelong learn-
ing performance of several current deep learn-
ing architectures can be significantly improved by
transfer at the appropriate layers. We then develop
an expectation-maximization (EM) method to au-
tomatically select the appropriate transfer config-
uration and optimize the task network weights.
This EM-based selective transfer is highly effec-
tive, balancing transfer performance on all tasks
with avoiding catastrophic forgetting, as demon-
strated on three algorithms in several lifelong ob-
ject classification scenarios.

1. Introduction
Transfer at different layers within a deep network corre-
sponds to sharing knowledge between tasks at different
levels of abstraction. In multi-task scenarios that involve di-
verse tasks, reusing low-layer representations may be appro-
priate for tasks that share feature-based similarities, while
sharing high-level representations may be more appropriate
for tasks that share more abstract similarities. Selecting
the appropriate granularity of knowledge to transfer is an
important architectural consideration for deep networks that
support multiple tasks.

In scenarios where tasks share substantial similarities, many
multi-task methods have found success using a static con-
figuration of the knowledge to share (Caruana, 1997; Yang

1Department of Computer and Information Science, Univer-
sity of Pennsylvania, Philadelphia, PA, USA 2Computer Science
Department, Carnegie Mellon University, Pittsburgh, PA, USA.
Correspondence to: Seungwon Lee <leeswon@seas.upenn.edu>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

& Hospedales, 2017; Lee et al., 2019; Liu et al., 2019b;
Bulat et al., 2020), such as sharing the lower layers of a
deep network with upper-level task-specific heads. As tasks
become increasingly diverse, the appropriate granularity for
transfer may vary between tasks based on their relationships,
necessitating more selective transfer. Prior work in selective
sharing for deep networks has typically either 1.) branched
the network into a tree structure (Lu et al., 2017; Yoon
et al., 2018; Vandenhende et al., 2019; He et al., 2018),
which emphasizes the sharing of lower layers or 2.) intro-
duced new learning modules between task models (Yang
& Hospedales, 2017; Xiao et al., 2018; Cao et al., 2018)
which increases the complexity of training. The transfer
configuration could then be optimized in batch settings to
maximize performance across the tasks.

However, the problem of selective transfer is further com-
pounded in continual or lifelong learning settings, in which
tasks are presented consecutively. The optimal transfer con-
figuration may vary between tasks or it may vary over time.
And indeed, we may not want to transfer at every layer, as
some task-specific layers may need to be interleaved with
shared knowledge in order to customize that shared knowl-
edge to individual tasks. To verify this premise and motivate
our work, we conducted a simple brute-force initial exper-
iment: we took a multi-task CNN with shared layers and
a lifelong learning CNN that uses factorized transfer (DF-
CNN, Lee et al., 2019) and varied the set of CNN layers
that employed transfer (with task-specific fully connected
layers at the top). Using two data sets, we considered sev-
eral static transfer configurations: transfer at all CNN layers,
transfer at the top-k CNN layers, transfer at the bottom-k
CNN layers, and alternating transfer/no-transfer CNN lay-
ers. The results are shown in Figure 1, with details given in
Section 2. Clearly, we see that the optimal transfer config-
uration in hindsight varies between task relationships and
transfer mechanisms. Restricting the transfer layers signif-
icantly improves performance over the naı̈ve approach of
transferring at all layers, with the alternating configuration
performing extremely well for both multi-task and lifelong
learning. This verifies that selective transfer is beneficial for
learning multiple tasks simultaneously or consecutively.

Instead of only considering such a restricted set of static

Sharing Less is More: Lifelong Learning in Deep Networks with Selective Layer Transfer

HPS all

HPS top1

HPS top2

HPS top3

HPS bottom
1

HPS bottom
2

HPS bottom
3

HPS alter.

0

0.1

0.2

0.3

0.4

0.5

M
e
a
n
 P

e
a
k

Pe
r-

ta
sk

 A
cc

u
ra

cy

(a) Multi-Task CNN with HPS / CIFAR-100

HPS all

HPS top1

HPS top2

HPS top3

HPS bottom
1

HPS bottom
2

HPS bottom
3

HPS alter.

0

0.2

0.4

0.6

M
e
a
n
 P

e
a
k

Pe
r-

ta
sk

 A
cc

u
ra

cy

(b) Multi-Task CNN with HPS / Office-Home

DF-CNN all

DF-CNN top1

DF-CNN top2

DF-CNN top3

DF-CNN bottom
1

DF-CNN bottom
2

DF-CNN bottom
3

DF-CNN alter.

0

0.1

0.2

0.3

0.4

M
e
a
n
 P

e
a
k

Pe
r-

ta
sk

 A
cc

u
ra

cy

(c) DF-CNN / CIFAR-100

DF-CNN all

DF-CNN top1

DF-CNN top2

DF-CNN top3

DF-CNN bottom
1

DF-CNN bottom
2

DF-CNN bottom
3

DF-CNN alter.

0

0.2

0.4

0.6

M
e
a
n
 P

e
a
k

Pe
r-

ta
sk

 A
cc

u
ra

cy

(d) DF-CNN / Office-Home

Figure 1: Accuracy of CNN models averaged over ten tasks in a lifelong learning setting with 95% confidence intervals.
This empirically shows that the optimal transfer configuration varies and is superior to transfer at all layers.

configurations in brute-force search, our goal is to automate
this process of selective transfer during learning, enabling
the learner to customize the transfer configuration to each
task. We investigate the use of architecture search during
learning to dynamically adjust the transfer configuration be-
tween tasks and over time, using expectation-maximization
(EM) to train both the parameters of the task models and
the layers to transfer within the deep net. This approach,
Lifelong Architecture Search via EM (LASEM), enables
deep nets to transfer different sets of layers for each task, al-
lowing more flexibility over prior work in branching-based
configurations for selective transfer. It also introduces little
computational cost over the base learner in comparison to
training selective transfer modules between task networks,
and in contrast to the expense of brute-force search over
all transfer configurations. To evaluate its effectiveness
and generality, we applied LASEM to three architectures in
several lifelong learning scenarios and compared it against
various lifelong learning and architecture search methods.

2. The Effects of Different Transfer
Configurations

This section further describes the initial experiments men-
tioned in the introduction as motivation for our proposed
LASEM method. The hypothesis of our work is that lifelong
deep learning can benefit from using a more flexible transfer
mechanism that selectively chooses the transfer architecture

configuration for each task. This would permit it to dynam-
ically select, for each task model, which layers to transfer
and which to keep as task-specific (enabling it to customize
transferred knowledge to an individual task).

To determine the effect of different transfer configurations,
we conducted a set of initial experiments using two methods:

Multi-Task CNN with hard parameter sharing (HPS):
This approach shares the hidden CNN layers between all
tasks, and maintains task-specific fully connected output
layers. It is one of the most common methods for multi-task
learning of neural nets (Caruana, 1997), and is widely used.

Deconvolutional factorized CNN (DF-CNN): The DF-
CNN (Lee et al., 2019) adapts CNNs to a continual learn-
ing setting by sharing layer-wise knowledge across tasks.
Instead of using the same convolutional filters for multi-
ple tasks, the convolutional filters are dynamically gener-
ated from a task-independent layer-dependent shared tensor
through a task-specific deconvolutional operation and ten-
sor contraction. Similar to HPS, the DF-CNN maintains
task-specific fully connected topmost layers. When training
the task models consecutively, gradients flow through to up-
date the shared tensors and the task-specific parameters that
transform those shared tensors to construct the task CNN.
This transfer architecture enables the DF-CNN to learn and
compress knowledge universal among the observed tasks
into the shared tensors.

Sharing Less is More: Lifelong Learning in Deep Networks with Selective Layer Transfer

Both these methods utilize a set of transfer-based CNN lay-
ers and non-transfer task-specific layers. For a network with
d CNN layers, there are 2d potential transfer configurations.
To explore the effect of transfer at different layers, we varied
the transfer configuration among several options:

• All: Transfer at all CNN layers. Note that the original
DF-CNN used this configuration.

• Top k: Transfer across task models occurs only at the
k highest CNN layers, with all others remaining task-
specific. We would expect this transfer configuration
to benefit tasks that share high-level concepts but have
low-level feature differences.

• Bottom k: Transfer occurs only at the k lowest CNN
layers, with all others remaining task-specific. This
architecture is the opposite of Top d− k, so we would
expect it to benefit tasks that share perceptual similari-
ties but have high-level differences.

• Alternating: This configuration alternates transfer and
non-transfer layers, enabling the non-transfer task-
specific layers to further customize the transferred
knowledge to the task.

We evaluated the performance of these transfer configura-
tions on the CIFAR-100 (Krizhevsky & Hinton, 2009) and
Office-Home (Venkateswara et al., 2017) data sets, follow-
ing the lifelong learning experimental setup used in previous
work (Lee et al., 2019). CIFAR-100 involves ten consecu-
tive tasks of ten-way image classification, where any object
class occurs in only one task. Office-Home involves ten
tasks of thirteen-way classification, using two of the avail-
able domains: “Product” images and “Real World” images.
The CNN architectures used for each data set and optimiza-
tion settings follow prior work and are detailed in Appendix
A. During training, we measured the peak per-task accuracy
on held-out test data, averaging results over five trials.

Our results in Figure 1 reveal that permitting transfer at all
layers does not guarantee the best performance. Notably,
we see that the DF-CNN, which is designed for lifelong
learning, can be improved beyond the original version (Lee
et al., 2019) by allowing transfer at only some layers. Fur-
thermore, we can see that the optimal transfer configuration
varies between data sets and algorithms. For instance on
Office-Home, sharing lower layers in the HPS multi-task
CNN achieves better performance on average, but transfer-
ring upper layers works better for the DF-CNN. Similarly,
the Alternating configuration consistently achieves near the
best performance for the DF-CNN. It benefits from permit-
ting the non-transfer layers to customize transferred knowl-
edge to the individual task, but it is not consistently as good
for HPS. This observation complicates learning on novel
tasks, since the best transfer configuration depends both on
the architecture and the task relations in the data set.

3. Architecture Search for the Optimal
Transfer Configuration

The experiment presented above reveals that the transfer
configuration can have a significant effect on lifelong perfor-
mance, and that the best transfer configuration varies. These
observations inspire our work to develop a more flexible
mechanism for selective transfer in lifelong learning.

3.1. The Transfer Configuration Search Problem

We can view the transfer configuration as a new hyper-
parameter for each task model. Even with the constraint
that all task models use the same transfer configuration, the
search space grows exponentially as the network gets deeper
(i.e., 2d configurations for d CNN layers). In more flexible
settings where the transfer configuration is customized to
each task, this search space grows even more: linearly in
the number of tasks. Although we could compound this
problem further by permitting partial transfer within a layer,
we focus on optimizing layer-based transfer configurations.

Formally, a layer-based transfer configuration for task t
can be specified by a d-dimensional binary vector c(t) ∈
C = {0, 1}d, where each element c(l)(t) is a binary indicator
whether or not the lth layer involves transfer. With a slight
abuse of notation, we can compactly notate c(t) by a set of
indices of transferred layers. For example, the Alternating
configuration described in Section 2 can be denoted by
c = [0, 1, 0, 1] ≡ {2, 4}; Figure 2 depicts this particular
configuration for three approaches.

Figure 2: The Alternating {2, 4} transfer configuration for
three approaches using CNNs with four conv. layers and
one fully connected layer. Models are shown for two tasks,
red and green, with shared or transfer-based layers in blue.

3.2. Lifelong Architecture Search via EM

Our goal is to determine the task-specific transfer configura-
tion while simultaneously optimizing the log-likelihood of
the task models and shared knowledge in a lifelong setting.
Treating c(t) as a latent variable of the model for task t,
we can employ expectation-maximization (EM) to perform
this joint optimization. We call this approach Lifelong Ar-
chitecture Search via EM (LASEM). Note that LASEM is

Sharing Less is More: Lifelong Learning in Deep Networks with Selective Layer Transfer

agnostic to the knowledge-transfer methods and applicable
both to classification and regression tasks. For each layer
l, LASEM maintains a shared set of transfer-based model
parameters θ(l)s and, for each new task, a set of task-specific
model parameters θ(l)t , using the chosen configuration c(t)
to determine which combination of parameters will be used
to form the specific model for that task. In brief, the E-
step estimates the usefulness of the representation that each
transfer configuration c ∈ C can learn from the given data
(i.e., the data likelihood P (ynew | Xnew , c)), while the M-
step optimizes the parameters of the task model and shared
knowledge. We next detail this approach.

First, we consider how to model the prior πt on possible
configurations of the current task’s c(t). Using a simple
frequency-based probability estimate with Laplace smooth-
ing represents the prior probability of each configuration as

P (c(t) = c) = πt(c) =
nc + 1∑

c̃∈C(nc̃ + 1)
, (1)

where c(t) denotes the configuration for task t, and nc is the
number of previous mini-batches for which c is the most
probable configuration derived from the posterior analyti-
cally. This estimate, which we adopt in the experiments,
considers each transfer configuration solely based on the
current task’s data. Alternative priors could instead be used,
such as measuring the historic transfer configuration fre-
quency over all tasks (which assumes substantial similarity
among tasks) or measuring configuration frequency over re-
lated tasks (which requires a notion of task similarity, such
as via a task descriptor (Isele et al., 2016; Sinapov et al.,
2015), or as determined dynamically by the task model’s
relation to shared knowledge). During development, we
also considered estimating the prior based on the probability
of configurations averaged over training samples instead of
the mini-batches nc, but this alternative was not different
statistically from Equation 1 in an empirical evaluation on
CIFAR100 and Office-Home.

In the E-step, the posterior over configurations is derived
by combining the above prior and likelihood, which can be
computed from the output of the task network on the current
task’s data (Xnew , ynew):

P (c |Xnew , ynew) ∝ P (c(t)=c)P (ynew |Xnew , c) . (2)

The M-step improves the log-likelihood via the estimated
probability distribution over the transfer configurations.
Both θs and θt are updated by the aggregated gradients
of the log-likelihood in cases where the transfer configura-
tions match the corresponding parameter. To combine the
gradients of a specific parameter vector (θs and θt) over
multiple possible configurations, we take the sum of the
corresponding gradients weighted by the posterior estimate

in Equation 2:

θ(l)s ← θ(l)s + λ
∑

c∈C : c(l)=1

P (c | Xnew , ynew)

∇ logP (ynew | Xnew , c) ∀l ∈ {1, . . . , d} ,
(3)

and

θ
(l)
t ← θ

(l)
t + λ

∑
c∈C : c(l)=0

P (c | Xnew , ynew)

∇ logP (ynew | Xnew , c) ∀l ∈ {1, . . . , d} .
(4)

The main difference between the update rules in Equations 3
and 4 is the condition for the index of the summation. Since
one gradient step on the configurations {θ(l)s ,θ

(l)
t }dl=1 may

have little effect on the likelihood, we can hold the likeli-
hood fixed to take multiple M-steps per E-step by iterating
Equations 3 and 4.

LASEM is specified in Algorithm 1 and illustrated in Fig-
ure 3. The parameters of the transfer-based components
are initialized only at the beginning of the lifelong learning
process (line 1), while the parameters of the task-specific
components and the prior probability of configurations are
initialized when the algorithm encounters a new task (lines
7–10). Each iteration, the lifelong learner obtains a mini-
batch of labeled data (Xnew , ynew) drawn i.i.d for some
task t, training the task model online. Typically, there would
be multiple consecutive mini-batches experienced per task

Algorithm 1 Lifelong Architecture Search via EM

1: {θ(l)s }dl=1 ← randomInitializer(TASK NET SIZE)
2: . Loop over entire training lifetime
3: while isMoreTrainingDataAvailable() do
4: . Get current task data
5: (Xnew , ynew , t)← getNextTrainingMinibatch()
6: . Initialize parameters for new tasks
7: if isNewTask(t) then
8: {θ(l)t }dl=1 ← randomInitializer(TASK NET SIZE)
9: πt ← priorInitializer()

10: end if
11: . Update task model and transfer configuration
12: Calculate likelihood P (ynew | Xnew , c) ∀c ∈ C
13: Calculate posterior: . Eq 2

P (c | Xnew , ynew) ∝ πt(c)P (ynew |Xnew , c)
∀c ∈ C

14: loop numMSteps times do . Eq 3 & 4
15: {θ(l)s ,θ

(l)
t }dl=1←gradOptimizer

(
Xnew , ynew , λ,

P (C | Xnew , ynew), {θ(l)s ,θ
(l)
t }dl=1

)
16: end loop
17: πt ←priorUpdater(πt, P (C | Xnew , ynew)) . Eq 1
18: end while

Sharing Less is More: Lifelong Learning in Deep Networks with Selective Layer Transfer

Midway through training Final result at convergence

layers

Task
1

Task
2

sh
ar
ed

At initialization

ta
sk
-s
pe
cif
ic

ta
sk
-s
pe
cif
ic

Figure 3: An illustration of LASEM’s dynamic progression of the transfer configurations during training. This example
depicts two task models (green and red), considering that there are multiple other task models that are not depicted. The line
thickness connecting adjacent layers represents the likelihood of the connection, which LASEM learns from data while
simultaneously training the individual layers. At initialization, all configurations are given uniform weight, which could be
modified to incorporate prior knowledge of task similarity. As LASEM learns the transfer configuration likelihoods and
layer weights from data, the posterior updates dynamically until the transfer configuration finalizes at convergence to a
configuration customized to each task.

before the environment would switch to a new task. The al-
gorithm applies the E-step (lines 12, 13, and 17) and M-step
(lines 14–16) using the data mini-batch at each iteration.
LASEM takes E- and M-steps for each mini-batch, so over
the consecutive mini-batches per task, this process would
be similar to the alternation of multiple E- and M-steps
performed by the standard EM algorithm. We consider life-
long learning scenarios in which a learner has no control
over tasks, so the current task can be switched to another
one regardless of the convergence of the learning algorithm.
Consequently, EM convergence is not required per task
since convergence may occur over multiple tasks; however,
the convergence can still be monitored by checking the prob-
ability weight over transfer configurations during training.

LASEM uses one set of transfer-based and task-specific
parameters (θs and θt) for all transfer configurations, rather
than maintaining distinct sets of parameters for each config-
uration. This approximation reduces the number of parame-
ters and permits parameter updates across transfer configu-
rations via a single gradient step, conserving memory.

3.3. Scaling to Numerous Layers

For a d-layer neural network with a time complexity of
N(·), the per-iteration computational complexity of both
the E- and M-steps are O(2dN(·)). As the network depth
d increases, it is well known that neural architecture search
(NAS) requires exponentially additional computation. To
remedy this issue, LASEM can adopt a similar solution to
that of other NAS methods (Pham et al., 2018; Liu et al.,

2019a) by considering transfer configurations over groups
of layers instead of individual layers, thereby reducing the
search space. We can redefine the transfer configuration
space C = {0, 1}d to be binary indicators over a partition
P of the set of layer indices {1, . . . , d}, where |P| � d.
Consequently, this reduces the search space from 2d to 2|P|.
Appendix D provides further details on this layer-grouping
approach; we evaluate this variation in Section 4.4.

3.4. Computational Cost

The computational cost of LASEM depends heavily on
the tasks, the choice of architecture for the task models,
and how quickly the transfer configuration converges. We
show empirically in Section 4.2 that LASEM in practice
introduces relatively little additional time complexity (∼30–
50% over the base learner). Empirically, the E-step takes
∼15–20% time of the M-step, but frequent switching of
the configuration by the E-step may interfere with the M-
step, consequently harming the convergence speed. Taking
more M-steps per E-step (by increasing numMSteps) can
improve this stability and consequently the computational
complexity by accelerating convergence. LASEM’s mem-
ory requirements are analyzed in Appendix E.

4. Experiments
We evaluated LASEM following the same experimental
protocol for lifelong learning as used in Section 2; see Ap-
pendix A for details. In addition to using the CIFAR100
and Office-Home data sets, we introduce a lifelong learning

Sharing Less is More: Lifelong Learning in Deep Networks with Selective Layer Transfer

HPS TF DF-CNN HPS TF DF-CNN TF DF-CNN
0.2

0.3

0.4

0.5

0.6

0.7

0.8
M

e
a
n
 P

e
a
k

Pe
r-

ta
sk

 A
cc

u
ra

cy
CIFAR100

4% data
Office-Home

60% data
STL10

20% data

Static Transfer Configurations
Transfer at All Layers
LASEM

HPS TF DF-CNN HPS TF DF-CNN TF DF-CNN
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

C
a
ta

st
ro

p
h
ic

 F
o
rg

e
tt

in
g
 R

a
ti

o CIFAR100
4% data

Office-Home
60% data

STL-10
20% data

Transfer at All Layers
Best Static Transfer Configuration
LASEM

Figure 4: (Left) Performance of LASEM applied to three methods and three lifelong scenarios. Black boxes show the
range of mean accuracies that different static configurations can achieve, with the blue lines denoting mean performance of
Transfer at All Layers. The red dots denote the mean performance of LASEM. Whiskers depict 95% confidence intervals.
(Right) Mean catastrophic forgetting ratio after training all tasks. Less forgetting is indicated by a ratio near 1.0; see
Appendix C. The best static transfer configuration was chosen in hindsight via an expensive brute-force search.

version of the STL-10 data set (Coates et al., 2011). STL-
10 has 5,000 training and 8,000 test images divided evenly
among 10 classes, with higher resolution than CIFAR-100.
Considering a limited-data regime, we constructed 20 tasks
of three-way classification using roughly 20% and 5% of
the given training data for training and validation, respec-
tively. To increase the task variations within STL-10, for
each task we randomly chose three image classes, applied
Gaussian noise to the images with a random mean and
variance, and randomly permuted the channels. All re-
sults were averaged over five trials with different random
seeds. The code and data set generators are available at
https://github.com/Lifelong-ML/LASEM.

4.1. Performance of LASEM

We applied LASEM to three algorithms: a multi-task CNN
with hard-parameter sharing (HPS) (Caruana, 1997), Tensor
Factorization (TF) (Yang & Hospedales, 2017; Bulat et al.,
2020) and the Deconvolutional Factorized CNN (DF-CNN)
(Lee et al., 2019). HPS interconnects CNNs in tree struc-
tures, with task models explicitly using the same parameters
of all shared layers. In contrast, the TF and DF-CNN task
models explicitly share only a fraction of tensors, and the
parameters of each task model are generated via transfer.

Figure 4 (left) compares the performance of the task-specific
transfer configurations discovered by LASEM (shown in
red) to using a single static transfer configuration (black
boxes). These black boxes depict the performance range of
the methods using various static transfer configurations (i.e.,
All, Top k, Bottom k, Alternating) for all task models, with
All shown in blue. To estimate this range, we tested eight
(50%) and 16 (25%) of the possible static configurations

for the four-CNN-layer (CIFAR-100 and Office-Home) and
six-CNN-layer (STL-10) task models, respectively.

We can see that LASEM chose transfer configurations that
perform toward the top of each range, especially on the
DF-CNN designed for lifelong learning. LASEM clearly
outperforms Transfer at All Layers. Automatically selecting
the transfer configuration becomes even more beneficial for
methods that have a wide range of performances for differ-
ent configurations. Examining the catastrophic forgetting
ratio (Figure 4-right, with details in Appendix C) reveals
the importance of selecting the appropriate transfer con-
figuration for maintaining performance on previous tasks,
revealing that LASEM exhibited less forgetting than base-
lines in most cases, especially on the DF-CNN. Moreover,
LASEM imposes little additional cost in order to determine
the transfer configuration. In timing experiments (Table 3),
we found that, compared to training with a pre-determined
static configuration, LASEM requires only 30–50% addi-
tional wall-clock time to search over 16 configurations of a
network with four layers, and only double the time to search
over 64 configurations of a network with six layers. In stark
contrast, brute-force search over 16 transfer configurations
in our experiments required a mean of 890% over the base
learner’s cost (with a range of 560–1,500% additional cost).

The frequencies of the transfer configurations chosen by
LASEM are depicted in Figure 5; see Appendix B for de-
tailed results. Figure 5 shows the proportion of time each
layer was chosen to be transfer-based. We see that HPS
tends to prefer task-specific layers, while TF and DF-CNN
are more likely to use transfer layers due to their ability
to adapt transferred knowledge. We can also see trends
among the chosen layers, such as DF-CNN preferring trans-
fer among higher layers.

https://github.com/Lifelong-ML/LASEM

Sharing Less is More: Lifelong Learning in Deep Networks with Selective Layer Transfer

layer1 layer2 layer3 layer4
0

20

40

60

80

100

Tr
a
n
sf

e
r-

b
a
se

d
 F

re
q
u
e
n
cy

 (
%

)

LASEM HPS
LASEM TF
LASEM DF-CNN

(a) CIFAR-100

layer1 layer2 layer3 layer4
0

20

40

60

80

100

Tr
a
n
sf

e
r-

b
a
se

d
 F

re
q
u
e
n
cy

 (
%

)

LASEM HPS
LASEM TF
LASEM DF-CNN

(b) Office-Home

Figure 5: Frequency of each layer being transfer-based according to the selection
of LASEM. Generally, upper layers are preferable for transfer, but there are
exceptions, i.e. HPS on CIFAR-100.

0.6 0.8 1
Probability of Top 2 Transfer

0.58

0.59

0.6

0.61
LASEM DF-CNN (Prior on Top 2)
LASEM DF-CNN

Figure 6: Performance of LASEM DF-
CNN compared to LASEM with a fixed
posterior distribution over the optimal
configuration (on Office-Home).

4.2. Comparison to Other Selective Transfer Methods

We compared LASEM on Office-Home against other meth-
ods that employ some notion of selective transfer, includ-
ing the Dynamically Expandable Network (DEN) (Yoon
et al., 2018), the Additive Parameter Decomposition Net-
work (APD-Net) (Yoon et al., 2020), the Progressive Neural
Net (ProgNN) (Rusu et al., 2016), and Differentiable Archi-
tecture Search (DARTS) (Liu et al., 2019a). DEN is a life-
long learner that extends HPS by expanding, splitting, and
selectively retraining the network to introduce both shared
and task-specific parameters in each layer if required. APD-
Net has base parameters shared across tasks like HPS, but
introduces task-specific masks and additive parameters for
adaptation to each task. ProgNN learns lateral connections
from earlier task models to the current task model. Both
DEN and ProgNN can support complex transfer configura-
tions due to their lack of constraints, such as no assumption
of a tree-structured configuration. For example, a ProgNN
with all zero-weighted lateral connections for a level creates
a task-specific layer, and zero-weighted current task model
connections create a transfer-based layer. DARTS is another
general framework for neural architecture search, which si-
multaneously determines both the most suitable operation of
each layer and the best architecture of stacking these layers.

Table 1 summarizes the performance of these methods and
our approach in terms of the mean peak per-task accuracy,
catastrophic forgetting ratio, and training time. APD-Net,
ProgNN and LASEM DF-CNN are statistically indistin-
guishable and perform better than the other methods in
terms of accuracy. However, APD-Net is weaker in retaining
knowledge from earlier tasks, as shown by its catastrophic
forgetting ratio being significantly lower than ProgNN and
LASEM DF-CNN. LASEM DF-CNN is ∼14% faster than
ProgNN, whose time complexity is proportional to the
square of the number of tasks. DEN and DARTS have
better training times, but fail to perform as well. LASEM
shows high accuracy regardless of the base lifelong learner
(e.g., HPS, TF, or DF-CNN) while introducing relatively

Selective Sharing Accuracy(%) Forgetting Time
Ratio (k sec)

DEN 48.00 ± 0.60 0.28 ± 0.01 55.9
APD-Net 59.58 ± 0.45 0.83 ± 0.03 21.5
ProgNN 60.03 ± 0.45 1.00 ± 0.00 96.7

DARTS HPS 45.64 ± 1.20 0.70 ± 0.07 43.8
DARTS DF-CNN 56.77 ± 0.49 0.35 ± 0.04 33.2

LASEM HPS 58.44 ± 0.90 0.81 ± 0.08 70.2
LASEM TF 59.14 ± 0.80 0.90 ± 0.04 77.3

LASEM DF-CNN 59.45 ± 1.10 0.98 ± 0.01 83.2

Table 1: Comparison of peak per-task accuracy, forgetting,
and training time for the same epochs between baselines
and LASEM on Office-Home, ± 95% confidence interval.

little additional time complexity (∼30–50% over the base
learner; see Table 3).

4.3. Effects of Non-Optimal Transfer Configurations

Besides the capability to customize the transfer configura-
tion to each task, LASEM has a key difference from using
a static transfer configuration as in Section 2: LASEM up-
dates both the transfer-based and task-specific parameters
(θs and θt) by gradients backpropagated from the loss of all
configurations weighted by the posterior. Consequently, gra-
dients from non-optimal configurations might act as noise
or be counterproductive to the optimization process.

To measure the impact of this aspect on LASEM, we per-
formed an ablative experiment using a static probability on
the transfer configurations, instead of the posterior derived
from data. This makes LASEM always select the same trans-
fer configuration for all task models, with the experiment
controlling the amount of adverse effects from non-optimal
configurations during LASEM’s optimization.

We first determined the optimal transfer configuration (Top
2 in this experiment), and gave it a static probability of se-
lection, which varied from P = 0.5 to 1 with a uniform dis-

Sharing Less is More: Lifelong Learning in Deep Networks with Selective Layer Transfer

tribution over other configurations. Figure 6 compares the
full LASEM DF-CNN against the ablated version. Knowing
the correct transfer configuration a priori (when P = 1)
certainly does improve performance, but the overall perfor-
mance difference is relatively small as P varies. Therefore,
the effect of interference from non-optimal configurations
is minimal, but does exist. Using a more informed prior
over the configurations based on task similarity may further
improve LASEM, which we leave to future work.

4.4. Scalability Experiments

To evaluate scalability, we applied LASEM to a larger deep
net, ResNet-18 (He et al., 2016), and a longer sequence of
tasks than in the prior experiment. Since the search space of
transfer configurations is exponential in the number of lay-
ers, we used the approach described in Section 3.3, bundling
the 17 convolutional layers of ResNet-18 into groups to re-
duce the search space. Appendix D provides details on the
experiments and results on other architectures.

As shown in Table 2, LASEM improves both the peak per-
task accuracy and catastrophic forgetting ratio of HPS using
the ResNet-18 HPS architecture, performing well under the
restricted transfer configuration search space. Interestingly,
the relative difference of training times between learning
with and without LASEM decreases when given more tasks
to learn, which can be attributed to faster convergence of the
EM process. These results show that LASEM can scale ef-
fectively to deeper architectures through group-based trans-
fer configurations and larger numbers of tasks.

4.5. Comparison to Task-Wise Brute-Force Search

We compared LASEM to the performance of task-wise
brute-force search over transfer configurations, shown in
Table 3. The brute-force search method trains every possi-
ble transfer configuration and chooses the best one for each
task in hindsight, thereby allowing task models to use dif-
ferent transfer configurations. The accuracy of brute-force
search is almost indistinguishable from LASEM at 95%
confidence, but it requires 4.0–9.5× time. This result shows
that LASEM’s dynamic transfer configuration performs well
while reducing training time.

5. Related Work
The simplest transfer mechanism is hard parameter sharing
(HPS), which directly reuses parameters (e.g., layers) be-
tween task models (Caruana, 1997). HPS is beneficial when
tasks share identical features, but its structural rigidity de-
generates performance as tasks become diverse. Constraints
such as regularization (Kirkpatrick et al., 2017; Yoon et al.,
2018; He et al., 2018), orthogonality (Suteu & Guo, 2019;
Riemer et al., 2019; Farajtabar et al., 2020) or attention

Selective Sharing Accuracy(%) Forgetting Time
Ratio (k sec)

CIFAR-100 (10 Tasks)
ResNet HPS 38.51 ± 0.53 0.54 ± 0.03 4.47

LASEM ResNet HPS 4G 39.47 ± 0.30 0.79 ± 0.05 11.1
LASEM ResNet HPS 5G 39.07 ± 1.10 0.79 ± 0.08 14.4
LASEM ResNet HPS 6G 40.00 ± 0.65 0.75 ± 0.06 25.1
LASEM ResNet HPS 7G 39.32 ± 0.33 0.74 ± 0.07 46.9

CIFAR-100 (40 Tasks)
ResNet HPS 38.01 ± 0.27 0.41 ± 0.02 63.4

LASEM ResNet HPS 4G 39.89 ± 0.73 0.62 ± 0.03 94.1
LASEM ResNet HPS 5G 38.89 ± 0.11 0.55 ± 0.07 109.2
LASEM ResNet HPS 6G 39.17 ± 0.62 0.56 ± 0.09 154.1

Table 2: Scalability of LASEM on ResNet-18 with varying
numbers of layer groups (#G), and a longer task sequence in
the lifelong learning setting. LASEM shows improvement in
both the peak per-task accuracy and catastrophic forgetting
with ± 95% confidence intervals.

(Serra et al., 2018; Yoon et al., 2020; Abati et al., 2020)
may reduce interference among tasks, but can deter pos-
itive transfer. Using tree-like structures (Lu et al., 2017;
Vandenhende et al., 2019; He et al., 2018) as the transfer
configuration for HPS in multi-task nets gives flexibility, but
assumes that lower-level representations are shared, which
may not be the case for diverse tasks, as shown in this paper.

Soft parameter sharing (Duong et al., 2015; Bilen & Vedaldi,
2017) builds task-specific networks with weights that are
related to other task models via implicit constraints. This
architecture provides flexibility to the representations that
each task network can learn, so it typically outperforms HPS
for more diverse tasks. Success has often been found by
using task-agnostic shared knowledge with a task-specific
mapping from that shared knowledge to the task models, fa-
cilitating transfer between tasks (Yang & Hospedales, 2017;
Bulat et al., 2020; Lee et al., 2019; Liu et al., 2019b). These
works focus on the mapping operation, but put less impor-
tance in which layers to transfer, as we explored.

Direct reuse of learned representations from previous tasks
models (Rusu et al., 2016; Misra et al., 2016; Cao et al.,
2018; Xiao et al., 2018) prevents forgetting, but only per-
mits forward transfer to new tasks (not reverse transfer) and
exhibits super-linear training time w.r.t the number of tasks.
Progress and compress (Schwarz et al., 2018) tackles this is-
sue by combining progressive neural nets and elastic weight
consolidation (Kirkpatrick et al., 2017), but this method suf-
fers from the same capacity limitations of HPS for diverse
tasks since one neural net must handle all learned tasks.

Neural architecture search (NAS) examines both the opera-
tors and their order in a neural net to optimize performance
(Elsken et al., 2018). Our problem of selective layer-based

Sharing Less is More: Lifelong Learning in Deep Networks with Selective Layer Transfer

Architecture LASEM Brute-force Search Transfer All Layers
Accuracy (%) Accuracy (%) Relative Time Accuracy (%) Relative Time

CIFAR-100 (10 Tasks)
HPS 39.3 ± 0.1 40.4 ± 0.3 6.55 24.7 ± 0.6 0.78
TF 38.4 ± 0.5 39.9 ± 1.1 8.81 36.3 ± 1.0 0.64

DF-CNN 42.0 ± 0.6 42.6 ± 0.7 9.45 36.3 ± 1.3 0.59
Office-Home (10 Tasks)

HPS 58.4 ± 0.9 59.4 ± 0.2 4.72 54.9 ± 0.7 0.72
TF 59.1 ± 1.0 58.7 ± 0.3 5.22 56.2 ± 0.7 0.66

DF-CNN 59.5 ± 1.1 58.8 ± 0.3 4.04 49.1 ± 0.6 0.61

Table 3: Comparison of test accuracy and training time for the same epochs to brute-force configuration search, ± 95%
confidence. Time is measured as the ratio relative to LASEM. (Time > 1.0 means that training is slower than LASEM.)

transfer is an instance of NAS. Strategies for NAS include
reinforcement learning (Tan et al., 2019; Chang et al., 2019),
evolutionary algorithms (Fernando et al., 2017) and gradient-
based learning (Alet et al., 2018). In contrast to these meth-
ods, DARTS makes optimization more feasible by using a
soft selection of the operators: a weighted sum of operations.
Most NAS methods including DARTS train better once the
architecture has stabilized, but the weights of DARTS’ soft
selections are susceptible to vanishing gradients, so it is
slower to stabilize than LASEM.

Modular networks learn sub-networks of particular low-
level functions (i.e., modules) and how to construct the full
task network using these modules. The main challenge of
training modular networks is the interdependence of search-
ing for the optimal compositional structure and learning
the optimal modules (Rosenbaum et al., 2019), so algo-
rithms such as meta-learning (Alet et al., 2018), expectation-
maximization (Kirsch et al., 2018) and reinforcement learn-
ing (Rosenbaum et al., 2018; Chang et al., 2019) have been
used to tackle this challenge. Despite the similarity of their
high-level problems to this paper, these works on modular
nets ensure the reusability of modules by the simultaneous
access to data from multiple tasks in batch up front; only
recently has the issue of modular reusability been explored
in the lifelong setting (Mendez & Eaton, 2021). In this
work, we search over simplified configurations of shared
or task-specific layers; the latter need not be applicable to
multiple tasks.

Empirical investigation of routing networks, a type of mod-
ular networks, has emphasized the importance of two key
characteristics in ensuring representational power: the di-
versity of modules per layer and the depth of the network
(i.e., the number of routing paths) (Ramachandran & Le,
2019). Although the problem setting of routing networks
is different from ours, these observations may benefit our
understanding of LASEM. The diversity of per-layer ex-
perts is dictated by the various mechanisms of the base
lifelong learners (e.g., HPS, TF or DF-CNN), and so base
learners that ensure more diversity in the layers (such as the

DF-CNN) are likely to fare better. This may also broach
the idea of having multiple potential shared layers to select
from, increasing diversity at additional computational cost.
The issue of depth is dependent on the chosen task model,
but LASEM is capable of scaling to numerous layers as
discussed in Section 3.3 and Appendix D.

6. Conclusion
We have shown that the transfer configuration can have a
significant impact on lifelong learning, and that the con-
figuration can be dynamically selected during the lifelong
learning process with minimal computational cost. Choos-
ing the optimal transfer configuration significantly improves
the performance of the DF-CNN and TF over the original
methods. Using a data-driven dynamic transfer configura-
tion reduces the assumptions of algorithm designers in terms
of task similarities.

Although we focused on layer-based transfer, LASEM could
easily be extended to support partial transfer within a layer
by imposing within-layer partitions and redefining the trans-
fer configuration space C to support those partitions. Dis-
covering these partitions directly from data, or providing
more flexible mechanisms for partial within-layer transfer
may further improve performance.

Acknowledgments
We are grateful to Jorge Mendez, Kyle Vedder, David Kent,
Marcel Hussing, Meghna Gummadi, and the anonymous
reviewers for their helpful feedback on this work. The re-
search presented in this paper was partially supported by the
DARPA Lifelong Learning Machines program under grant
FA8750-18-2-0117, the DARPA SAIL-ON program under
contract HR001120C0040, and the Army Research Office
under grant W911NF20-1-0080. The views and conclusions
in this paper are those of the authors and should not be inter-
preted as representing the official policies, either expressed
or implied, of DARPA, ARO, or the U.S. Government.

Sharing Less is More: Lifelong Learning in Deep Networks with Selective Layer Transfer

References
Abati, D., Tomczak, J., Blankevoort, T., Calderara, S., Cuc-

chiara, R., and Bejnordi, B. E. Conditional channel gated
networks for task-aware continual learning. In Proceed-
ings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2020.

Alet, F., Lozano-Perez, T., and Kaelbling, L. P. Modular
meta-learning. In Proceedings of The 2nd Conference on
Robot Learning, volume 87 of Proceedings of Machine
Learning Research, pp. 856–868, 2018.

Bilen, H. and Vedaldi, A. Universal representations: the
missing link between faces, text, planktons, and cat
breeds. CoRR, abs/1701.07275, 2017.

Bulat, A., Kossaifi, J., Tzimiropoulos, G., and Pantic, M.
Incremental multi-domain learning with network latent
tensor factorization. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence. AAAI Press, 2020.

Cao, J., Li, Y., and Zhang, Z. Partially shared multi-task
convolutional neural network with local constraint for
face attribute learning. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pp.
4290–4299, 2018.

Caruana, R. Multitask learning. Machine learning, 28(1):
41–75, 1997.

Chang, M., Gupta, A., Levine, S., and Griffiths, T. L. Auto-
matically composing representation transformations as a
means for generalization. In Proceedings of the Interna-
tional Conference on Learning Representations, 2019.

Coates, A., Ng, A., and Lee, H. An analysis of single-layer
networks in unsupervised feature learning. In Proceed-
ings of the International Conference on Artificial Intelli-
gence and Statistics, pp. 215–223, 2011.

Duong, L., Cohn, T., Bird, S., and Cook, P. Low resource
dependency parsing: Cross-lingual parameter sharing in a
neural network parser. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural
Language Processing, volume 2, pp. 845–850, 2015.

Elsken, T., Metzen, J. H., and Hutter, F. Neural architecture
search: A survey. CoRR, abs/1808.05377, 2018.

Farajtabar, M., Azizan, N., Mott, A., and Li, A. Orthogonal
gradient descent for continual learning. In Proceedings
of the International Conference on Artificial Intelligence
and Statistics, 2020.

Fernando, C., Banarse, D., Blundell, C., Zwols, Y., Ha, D.,
Rusu, A. A., Pritzel, A., and Wierstra, D. Pathnet: Evolu-
tion channels gradient descent in super neural networks.
CoRR, abs/1701.08734, 2017.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pp. 770–778, 2016.

He, X., Zhou, Z., and Thiele, L. Multi-task zipping via layer-
wise neuron sharing. Advances in Neural Information
Processing Systems, pp. 6016–6026, 2018.

Isele, D., Rostami, M., and Eaton, E. Using task features
for zero-shot knowledge transfer in lifelong learning. In
Proceedings of the International Joint Conference on
Artificial Intelligence, pp. 1620–1626, 2016.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Des-
jardins, G., Rusu, A. A., Milan, K., Quan, J., Ramalho,
T., Grabska-Barwinska, A., Hassabis, D., Clopath, C.,
Kumaran, D., and Hadsell, R. Overcoming catastrophic
forgetting in neural networks. Proceedings of the Na-
tional Academy of Sciences, 114(13):3521–3526, 2017.

Kirsch, L., Kunze, J., and Barber, D. Modular networks:
Learning to decompose neural computation. Advances in
Neural Information Processing Systems, 31, 2018.

Krizhevsky, A. and Hinton, G. Learning multiple layers of
features from tiny images. Technical report, University
of Toronto, 2009.

Lee, S., Stokes, J., and Eaton, E. Learning shared knowledge
for deep lifelong learning using deconvolutional networks.
In Proceedings of the International Joint Conference on
Artificial Intelligence, pp. 2837–2844, 2019.

Liu, H., Simonyan, K., and Yang, Y. DARTS: differentiable
architecture search. In Proceedings of the International
Conference on Learning Representations, 2019a.

Liu, H., Sun, F., and Fang, B. Lifelong learning for het-
erogeneous multi-modal tasks. In Proceedings of the
International Conference on Robotics and Automation,
pp. 6158–6164. IEEE, 2019b.

Lu, Y., Kumar, A., Zhai, S., Cheng, Y., Javidi, T., and Feris,
R. Fully-adaptive feature sharing in multi-task networks
with applications in person attribute classification. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2017.

Mendez, J. and Eaton, E. Lifelong learning of composi-
tional structures. In Proceedings of the International
Conference on Learning Representations, 2021.

Misra, I., Shrivastava, A., Gupta, A., and Hebert, M. Cross-
stitch networks for multi-task learning. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 3994–4003, 2016.

Sharing Less is More: Lifelong Learning in Deep Networks with Selective Layer Transfer

Pham, H., Guan, M. Y., Zoph, B., Le, Q. V., and Dean, J.
Efficient neural architecture search via parameter shar-
ing. In Proceedings of the International Conference on
Machine Learning, 2018.

Ramachandran, P. and Le, Q. V. Diversity and depth in
per-example routing models. In Proceedings of the Inter-
national Conference on Learning Representations, 2019.

Riemer, M., Cases, I., Ajemian, R., Liu, M., Rish, I., Tu,
Y., and Tesauro, G. Learning to learn without forgetting
by maximizing transfer and minimizing interference. In
Proceedings of the International Conference on Learning
Representations, 2019.

Rosenbaum, C., Klinger, T., and Riemer, M. Routing net-
works: Adaptive selection of non-linear functions for
multi-task learning. In Proceedings of the International
Conference on Learning Representations, 2018.

Rosenbaum, C., Cases, I., Riemer, M., and Klinger, T. Rout-
ing networks and the challenges of modular and composi-
tional computation. CoRR, abs/1904.12774, 2019.

Rusu, A. A., Rabinowitz, N. C., Desjardins, G., Soyer,
H., Kirkpatrick, J., Kavukcuoglu, K., Pascanu, R.,
and Hadsell, R. Progressive neural networks. CoRR,
abs/1606.04671, 2016.

Schwarz, J., Czarnecki, W., Luketina, J., Grabska-
Barwinska, A., Teh, Y. W., Pascanu, R., and Hadsell, R.
Progress & compress: A scalable framework for continual
learning. In Proceedings of the International Conference
on Machine Learning, pp. 4528–4537, 2018.

Serra, J., Suris, D., Miron, M., and Karatzoglou, A. Over-
coming catastrophic forgetting with hard attention to the
task. In Proceedings of the International Conference on
Machine Learning, pp. 4548–4557, 2018.

Sinapov, J., Narvekar, S., Leonetti, M., and Stone, P. Learn-
ing inter-task transferability in the absence of target task
samples. In Proceedings of the International Confer-
ence on Autonomous Agents and Multiagent Systems, pp.
725–733, 2015.

Suteu, M. and Guo, Y. Regularizing deep multi-task net-
works using orthogonal gradients. CoRR, abs/1912.06844,
2019.

Tan, M., Chen, B., Pang, R., Vasudevan, V., Sandler, M.,
Howard, A., and Le, Q. V. MnasNet: Platform-aware
neural architecture search for mobile. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 2820–2828, 2019.

Vandenhende, S., Brabandere, B. D., and Gool, L. V.
Branched multi-task networks: deciding what layers to
share. CoRR, abs/1904.02920, 2019.

Venkateswara, H., Eusebio, J., Chakraborty, S., and Pan-
chanathan, S. Deep hashing network for unsupervised
domain adaptation. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2017.

Xiao, L., Zhang, H., Chen, W., Wang, Y., and Jin, Y. Learn-
ing what to share: leaky multi-task network for text clas-
sification. In Proceedings of the International Conference
on Computational Linguistics, pp. 2055–2065, 2018.

Yang, Y. and Hospedales, T. Deep multi-task representation
learning: a tensor factorisation approach. In Proceedings
of the International Conference on Learning Representa-
tions, 2017.

Yoon, J., Yang, E., and Hwang, S. Lifelong learning with
dynamically expandable networks. In Proceedings of the
International Conference on Learning Representations,
2018.

Yoon, J., Kim, S., Yang, E., and Hwang, S. Scalable and
order-robust continual learning with additive parameter
decomposition. In Proceedings of the International Con-
ference on Learning Representations, 2020.

